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Lunar Power Hibernation is an approach to dramatically extend capabilities and 
duration of low-cost robotic lunar missions by exploiting the common 18650 Li-Ion 
battery cell’s ability to tolerate and recover from extreme cold of the lunar night.

Power Hibernation: Surviving the Extreme Cold Lunar 
Environment 



Batteries have always been assumed to be the weak link in surviving 
the lunar night.
• Recent studies show that common lithium-ion cells can survive the night 
• Success depends on safely restoring the power system at lunar dawn 

Surveyor Missions Experience (1966-1968) 
• Surveyor was not designed for Night Survival
• RTG technology still under development
• Multiple Surveyors did indeed survive the night

• Used Silver-Zinc Batteries
• Most Surveyor missions partially survived beyond one lunar 

cycle.

NASA Photo
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LRO DIVINER: Lunar Day/Night Temperature Range by Latitude
Thermal model calculations of monthly and annual lunar surface temperature variations at various latitudes.

< --- Lunar Night 
Temperatures are 

extremely cold 
everywhere
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Environment and Mission Constraints

Extreme Thermal and Illumination Environment 
• Day high temperatures span from 100K to near 400K based on latitude
• Night low temperatures span 50-100K for all latitudes 
• Non-polar latitudes night durations ~354 hours
• Polar Regions have very low sun angle, 

• Seasonal Variations (sun drops below horizon in lunar “polar winter” for ~4 ½ Months)
• Illumination affected by site elevation and topographical features casting shadows

Commercial Lunar Payload Services (CLPS)
• CLPS landers/robotics provide single lunar day of operation
• CLPS landers are low cost, short development cycle
• Hibernation may be a viable option for robotic survival and extending operating life
• Hibernation success depends on exploiting cold tolerant and cryo-capable components
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Li-Ion Low Temperature Survival

Published work suggested that Li-Ion Cells can survive extreme cold
• 2018 ISRO investigated 18650 Li-Ion cell passive lunar night survivability.
• Evaluated 3 manufacturers of 18650 Li-ion cells.
• Subjected them to 14-day lunar night at -160°C  (in vacuum)
• Cells recovered charge capacity with no apparent damage or degradation

Batteries viewed as the weak link in terms of night survival
• If a battery survives the night, it will enable spacecraft survival
• The Li-Ion cells must pass through a freeze-thaw cycle
• NASA Glenn decided to investigate and verify the survival claims
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Preliminary Tests Performed at 1 Atmosphere
• Chilled to 80K (-193°C) (3 of 5 Survived)
• Strongly suspect seal leak and trapped LN2
• 20 mg trapped LN2 can rupture the pressure relief disc.

Test Setup for full vacuum
• Vacuum chamber pressure at ~70 mtorr 
• Cryocooler chilled and held near 100K.
• Eliminated pressure reversal and LN2 Intrusion
• Voltage dropped to zero below 200K 
• Voltage recovers when warmed above 200K
• 4 of 4 cell trials in vacuum were successful 

Cell Hibernation Investigation at NASA Glenn
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Hibernation and Dawn Operations 

Power Hibernation: 
Point Arrays toward Dawn, Shut-Down Loads, Isolate Battery, Wait for Dawn
Lunar Dawn Controls: (first illumination, coldest temperature)
• Dawn Mode controls activate on solar array power alone (Battery still Isolated)
• Majority of systems are still hibernating.
• Dawn Mode must actively manage array output.
• Dawn Mode manages thermal conditioning (Pre-Heaters) for battery and avionics 
• Battery Management System (also operates in extreme cold)

• Monitor battery temperatures and voltages during Dawn Pre-heat phase.
• Perform pre-thaw diagnostics and isolate potential faults 
• At normal temperature BMS pre-charges battery to match main bus voltage

• Reconnect Battery to Main Bus- Dawn Mode Complete!
• Clears “Power Inhibits” allowing system to boot-up as normal
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Power Hibernation Architecture
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Cold Tolerant Electronics for Hibernation

Cold Tolerant:  The ability to passively tolerate extreme cold without damage
• All electronic systems (power, avionics and communications) must be cold tolerant.
• Avionics will need to extend the qualification testing range.
• Cold tolerance is primarily dependent on electronic device and circuit level packaging.

• Device Level:  Generally, individual device packages have shown a tolerance of cold 
• Circuit Level: (PC Board Substrate):  

• Fiberglass reinforced plastic (FRP) circuit board material is remarkably cold tolerant.
• Minimize Thermal Stress by minimizing spatial temp gradients
• Minimize temperature rate of change (dT/dt.) 
• Lunar environment temperatures change slowly (few degrees/hour) 

• NASA has succeeded in modifying COTS circuits for cryogenic operations.
• Usually requires replacement of temperature sensitive elements (electrolytic capacitors)
• Redesigning circuits as hi-rel modules using ceramic substrates usually not necessary. 



Cryo-Capable Electronics for Hibernation

Cryo-Capable: The ability provide stable operation in extreme cold
• Restoring power at Lunar Dawn requires “Cryo-Capable” electronics. 
• Device Level Cryo-Capability, depends on semiconductor temperature dependent properties and 

device type.  (Most individual devices work at cryo temperatures)
• Circuit Level Cryo-Capability, depends on stability of device interactions, involve multiple 

materials and device types with differing response to temperature.  Circuits stable at normal 
temperature may be unstable in extreme cold temperatures. 

• Cryo-Capability is most challenging for Analog Circuits (Power, RF Comm, Instrumentation)
• Analog Circuits: Analog signal regulation, modulation, amplification, filtering etc. 

• Ideally, each device is insensitive to temperature.
• In Reality, many devices will need temperature compensation. 
• Resistors and capacitors are available in materials with flat temperature response. 
• Inductors relying on magnetic core materials tend to become lossy at low temperatures. 



Cryo-Capable Electronics Technology
Temperature 20°C to -196°C  (293K to 77K)

Power switching device testing in LN2
Silicon (Si)
• Sensitivity to temperature 
• On-Resistance Rds(ON) improves at low temps
Silicon-Carbide (SiC) 
• Very sensitive to Temperature
• On-Resistance Rds(ON) degrades at low temps
• Evidence of “Carrier Freeze-Out” 
Gallium-Nitride (GaN): 
• Low sensitivity to temperature 
• On-Resistance Rds(ON) improves at low temps
• GaN is best for this temperature range 

Rds(ON) On Resistance 

SiC

GaN Si-GaN

Vgs(th) Gate Threshold Voltage

SiC

Si
Si-GaN

GaN

Figures Courtesy of Marcelo Gonzalez NASA Glenn

Si



Cryo-Capable Electronics Technology

Silicon Devices: 
• Silicon dominates digital applications and most analog applications 
• Wide availability, low cost, huge Body-of-Knowledge
• Silicon digital devices demonstrated down to 4K. 
• Changes in characteristics over the temperature range requires 

compensation. 

Figures Courtesy of Marcelo 
Gonzalez NASA Glenn
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Further Li-Ion Cell work
• Li-Ion Batteries are “Cold Tolerant”: passively survive the cold without loss of capability.
• NASA preliminary testing was limited to mostly one source
• Further Testing to include cells from lots certified for human space flight 

• Strategic procurements of 40,000-60,000 cell lots 
• Controlled supply “Chain of Custody” 
• Establish Statistical Confidence 

• Evaluate alternate cell formats (20700, 21700) 
• Establish State-of-Charge guidelines

• Thermal runaway is less likely below 40% SOC
• Note: Cells are safest when frozen (nail tests) but could become a hazard when thawed.

• Investigate pre-thaw Fault Detection
• Detect and isolate a fault in frozen state if possible
• Modulate temperature rise to dissipate faulted cell energy slowly.

Need Collaboration 
Hibernation Battery Development



Need Collaboration
Hibernation Electronics Development

Most Avionics need only Passively Tolerate the extreme cold.
• Avionics will need additional qualification testing to prove passive tolerance
• Conventional FRP circuit board material is remarkably cold tolerant.
• Lunar environment changes slowly (few degrees/hour)
Active Cryo-Capable Electronics primarily for restoring power.
• Silicon is not ideal but will work if proper compensation is applied.
• GaN has low sensitivity to temperature and excellent low-temperature performance.

• Need GaN applied to more analog applications. 
• Further investigate other materials. (GaAs, SiGe)

• Need New inductor core materials with low loss at cryo temps.
• Need cryo-temperature device models. (CoolSpice)



Summary

Hibernation Enables Low-Cost Missions Achieve Multi-Lunar Cycles 
• 18650 Li-Ion cells demonstrated a night survival capability
• “Passive Hibernation” approach minimizes changes to existing hardware
• Reduces dependency on costly radioisotope heat and power sources
• Reduces dependency on pre-established power infrastructure
• Applicable to lunar robotic systems including ISRU and human missions
• Hibernation improves survival and recovery options in contingency situations 
• Ultimately: Hibernation technologies will lead to more robust robotic systems that 

are actually designed for the Lunar Environment.



Thanks for Listening

Power Hibernation:
Surviving the Extreme Cold Lunar Environment
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